Stream-Based Reasoning in DyKnow
نویسندگان
چکیده
The information available to modern autonomous systems is often in the form of streams. As the number of sensors and other stream sources increases there is a growing need for incremental reasoning about the incomplete content of sets of streams in order to draw relevant conclusions and react to new situations as quickly as possible. To act rationally, autonomous agents often depend on high level reasoning components that require crisp, symbolic knowledge about the environment. Extensive processing at many levels of abstraction is required to generate such knowledge from noisy, incomplete and quantitative sensor data. We define knowledge processing middleware as a systematic approach to integrating and organizing such processing, and argue that connecting processing components with streams provides essential support for steady and timely flows of information. DyKnow is a concrete and implemented instantiation of such middleware, providing support for stream reasoning at several levels. First, the formal KPL language allows the specification of streams connecting knowledge processes and the required properties of such streams. Second, chronicle recognition incrementally detects complex events from streams of more primitive events. Third, complex metric temporal formulas can be incrementally evaluated over streams of states. DyKnow and the stream reasoning techniques are described and motivated in the context of a UAV traffic monitoring application.
منابع مشابه
Stream-Based Reasoning Support for Autonomous Systems
For autonomous systems such as unmanned aerial vehicles to successfully perform complex missions, a great deal of embedded reasoning is required at varying levels of abstraction. To support the integration and use of diverse reasoning modules we have developed DyKnow, a stream-based knowledge processing middleware framework. By using streams, DyKnow captures the incremental nature of sensor dat...
متن کاملStream-Based Middleware Support for Embedded Reasoning
For autonomous systems such as unmanned aerial vehicles to successfully perform complex missions, a great deal of embedded reasoning is required at varying levels of abstraction. In order to make use of diverse reasoning modules in such systems, issues of integration such as sensor data flow and information flow between such modules has to be taken into account. The DyKnow framework is a tool w...
متن کاملDyKnow : A Stream-Based Knowledge Processing Middleware Framework
As robotic systems become more and more advanced the need to integrate existing deliberative functionalities such as chronicle recognition, motion planning, task planning, and execution monitoring increases. To integrate such functionalities into a coherent system it is necessary to reconcile the different formalisms used by the functionalities to represent information and knowledge about the w...
متن کاملStream Reasoning in DyKnow: A Knowledge Processing Middleware System
The information available to modern autonomous systems is often in the form of streams. As the number of sensors and other stream sources increases there is a growing need for incremental reasoning about the incomplete content of sets of streams in order to draw relevant conclusions and react to new situations as quickly as possible. To act rationally, autonomous agents often depend on high lev...
متن کاملInstitutionen För Datavetenskap Semantic Matching for Stream Reasoning
Autonomous system needs to do a great deal of reasoning during execution in order to provide timely reactions to changes in their environment. Data needed for this reasoning process is often provided through a number of sensors. One approach for this kind of reasoning is evaluation of temporal logical formulas through progression. To evaluate these formulas it is necessary to provide relevant d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010